GEOCHEMICAL CHARACTERISTICS AND TECTONIC ENVIRONMENT OF THE EARLY JURASSIC A-TYPE GRANITES IN YICHUN AREA, HEILONGJIANG PROVINCE
-
摘要:
黑龙江省伊春地区大地构造位于兴蒙造山带东段的小兴安岭-张广才岭弧盆系内,中生代发育多期次岩浆活动,记录了弧盆系的构造演化过程. 通过对伊春北部白桦青年队地区的中生代花岗岩进行详细的岩石学及地球化学特征和年代学研究,结果显示,区内出露的中生代花岗岩主要包括中细粒正长花岗岩、似斑状二长花岗岩. 中细粒正长花岗岩LA-ICP-MS锆石U-Pb测年结果为190.6±1.7 Ma,为早侏罗世. 岩石地球化学特征显示具有高硅(SiO2=72.8%~77.43%),富碱(Na2O+K2O=7.43%~8.61%),贫镁(MgO=0.11%~0.54%)、钙(CaO=0.24%~1.77%)、磷(P2O5=0.02%~0.08%)、钛(TiO2=0.05%~0.31%)的特点,A/CNK值为1.05~1.15,为过铝质、高钾钙碱性花岗岩. 微量元素方面,亏损高场强元素Nb、Ti、P和大离子亲石元素Ba、Sr,富集Rb、K、Th、Hf等元素. 稀土配分曲线总体上呈不对称右倾型,且Eu负异常(δEu=0.08~0.72)明显. 这些地球化学特征显示研究区早侏罗世花岗岩具A2型花岗岩的特点,形成于造山后的伸展构造背景. 结合小兴安岭地区的岩浆活动和构造事件记录,认为黑龙江伊春地区早侏罗世岩浆侵位活动可能发生在古太平洋板块西向俯冲所造成的造山后伸展构造背景下.
Abstract:The Yichun area of Heilongjiang Province is tectonically located in the Xiaoxinganling-Zhangguangcailing arc-basin system in the eastern Xingan-Mongolian orogenic belt, with multiple-stage magmatic activities occurred in Mesozoic, which has recorded the tectonic evolution of arc-basin system. The paper studies in detail the petrology, geochemistry and chronology of the Mesozoic granites in Baihuaqingniandui area of northern Yichun. The results show that the Mesozoic granites exposed in the area mainly include fine-medium-grained syenogranite and porphyritic monzogranite. The LA-ICP-MS zircon U-Pb dating yields the age of 190.6±1.7 Ma, indicating the fine-medium-grained syenogranite was formed in the Early Jurassic. Lithogeochemically, the granites are characterized by high Si, rich in alkali, poor in Mg, Ca, P and Ti, with the A/CNK value of 1.05-1.15, belonging to peraluminous, high potassium calc-alkaline series, and depletion of HFSEs (Nb, Ti and P) and LILEs (Ba and Sr), and enrichment of elements such as Rb, K, Th and Hf. The REE patterns show asymmetrically right-dipping type, with obvious negative Eu anomaly. These geochemical characteristics reveal that the Early Jurassic granites in the area are typically of A2-type, formed in the post-orogenic extensional tectonic setting. Combined with the magmatic activities and tectonic events in Xiaoxinganling Mountains, it is believed that the Early Jurassic magmatic emplacement in Yichun area may have occurred under the post-orogenic extensional tectonic background caused by the westward subduction of paleo-Pacific Plate.
-
Keywords:
- Early Jurassic /
- A-type granite /
- geochemistry /
- tectonic environment /
- Heilongjiang Province
-
0. 引言
小兴安岭地区位于兴蒙造山带的东段, 处于古亚洲洋构造域和环太平洋构造域的交汇部位, 是构造岩浆活动最复杂的造山带之一[1-2]. 中生代花岗岩在小兴安岭出露面积较大, 与大兴安岭地区的花岗岩组成了中国东北地区的"花岗岩海"[3-9]. 近年来对东北地区"花岗岩海"的形成时代、成因及其形成的大地构造背景的研究取得了许多重要进展[10-11], 但目前缺乏统一的认识: 一种观点认为是古亚洲洋闭合后, 中亚造山带内发生拆沉作用而产生大量岩浆上涌形成的; 另一种观点则认为是受古太平洋构造体系的制约[12-14]. 鉴于此, 笔者通过对小兴安岭-张广才岭弧盆系内伊春市白桦青年队地区的早侏罗世正长花岗岩和二长花岗岩的岩石学及地球化学特征进行研究, 探讨其形成时代、岩石成因及构造背景, 为本地区及区域上的构造演化研究提供基础资料.
1. 地质背景
研究区位于小兴安岭东南麓黑龙江省伊春市白桦青年队地区, 大地构造位置处于兴蒙造山带东段, 位于小兴安岭-张广才岭弧盆系内, 西部与大兴安岭弧盆系相邻, 西南为松嫩地块, 东部以太平沟-依兰-黄松俯冲增生杂岩带与佳木斯-兴凯地块相分隔[15](图 1). 区域地质历史演化漫长, 经历多期构造热事件, 中生代岩浆活动尤为剧烈[16-17]. 区内出露的中生界地层主要为下白垩统板子房组、宁远村组、嫩江组和新生界中-上新统孙吴组. 研究区中生代花岗岩主要由早侏罗世中细粒正长花岗岩、似斑状二长花岗岩, 晚二叠世二长花岗岩和中奥陶世二长花岗岩组成. 早侏罗世中细粒正长花岗岩主要分布在研究区的西部和北部, 呈岩株、小岩株、小岩瘤状产出. 该花岗岩侵入到晚二叠世花岗岩, 涌动侵入早侏罗世似斑状二长花岗岩中, 被孙吴组地层覆盖. 早侏罗世似斑状二长花岗岩在研究区的中部呈岩株状产出, 该花岗岩侵入到中奥陶世花岗岩, 被孙吴组、嫩江组、宁远村组地层覆盖(图 2). 样品CM1采自白桦青年队东3 km, 坐标为128°43'52.8″E, 48°25'21.5″N, 岩性为正长花岗岩(图 2).
图 2 研究区区域地质图1-第四系(Quaternary); 2-孙吴组(Sunwu fm.); 3-嫩江组(Nenjiang fm.); 4-宁远村组(Ningyuancun fm.); 5-板子房组(Banzifang fm.); 6-二浪河组(Erlanghe fm.); 7-铅山组(Qianshan fm.); 8-早侏罗世中细粒正长花岗岩(Early Jurassic fine-medium-grained syenogranite); 9-早侏罗世似斑状二长花岗岩(Early Jurassic porphyritic monzogranite); 10-晚二叠世花岗岩(Late Permian granite); 11-中奥陶世花岗岩(Middle Ordovician granite); 12-断层(fault); 13-韧性剪切带(ductile shear zone); 14-火山断裂(volcanic fault); 15-火山口(crater); 16-U-Pb测年采样点(U-Pb dating sampling site)Figure 2. Regional geological map of the study area2. 岩相学特征
早侏罗世中细粒正长花岗岩为中细粒花岗结构, 粒度均匀(图 3a、c). 钾长石为肉红色, 呈半自形宽板状、他形粒状, 粒径2~4 mm, 含量为40%~50%;斜长石为灰白色, 呈半自形粒状-条状, 粒径1~3 mm, 含量为10%~15%;石英为烟灰色, 呈他形粒状, 波状消光, 与钾长石镶嵌分布, 粒径2~4 mm, 含量为30%~35%;黑云母为褐色, 呈不规则片状或集合体状, 粒径0.6~4 mm, 含量约3%. 副矿物组合为锆石+赤褐铁矿+钛铁矿等.
图 3 白桦青年队地区花岗岩类野外宏观露头和显微特征照片a-正长花岗岩野外露头(field outcrop of syenogranite); b-似斑状二长花岗岩野外露头(field outcrop of porphyritic monzogranite); c-正长花岗岩镜下特征(正交偏光)(microscopic characteristics of syenogranite under cross-polarized light); d-似斑状二长花岗岩镜下特征(正交偏光)(microscopic characteristics of porphyritic monzogranite under cross-polarized light); Pl-斜长石(plagioclase); Kfs-钾长石(K-feldspar); Qtz-石英(quartz); Chl-绿泥石(chlorite)Figure 3. Field outcrops and microphotographs of the granite samples from Baihuaqingniandui area早侏罗世似斑状二长花岗岩, 似斑状结构, 块状构造(图 3b、d). 钾长石似斑晶为浅肉红色, 呈半自形宽板状, 粒径1~2 cm, 含量为5%~10%;基质为中粒结构, 主要矿物有钾长石、斜长石、石英、黑云母. 钾长石为浅肉红色, 粒径3~7 mm, 含量为25%~30%;斜长石为灰白色, 粒径2~6 mm, 含量为20%~30%;石英为灰白色、烟灰色, 粒径3~5 mm, 波状消光, 局部与钾长石或黑云母镶嵌分布, 含量为20%~25%. 暗色矿物主要为黑云母, 存在绿泥石化的蚀变现象, 粒径1~2 mm, 含量为2%~5%. 副矿物组合为锆石+磷灰石+榍石+绿帘石等.
3. 分析方法
3.1 锆石U-Pb定年
锆石U-Pb定年的样品均选取新鲜岩石样品碎至80目以下, 然后分选出锆石, 在双目显微镜下挑选晶形好、无裂隙、透明干净且较自形的锆石颗粒. 把挑选出来的自形程度好、颗粒大的锆石在玻璃板上用环氧树脂固定并抛光. 锆石的阴极发光图像在廊坊宇能岩石矿物分选技术服务有限公司完成. 锆石U-Pb定年分析在中国地质大学(北京)科学研究院实验中心完成. 锆石测年所采用的仪器为Agilent 7500a型LA-ICP-MS及与之配套的New Wave 193SS激光剥蚀系统, 标准锆石91500作为U-Pb同位素比值的外标, 样品的同位素比值及元素含量计算采用Glitter(ver4.4.1)软件, 常用实验参数见文献[18-19].
3.2 全岩地球化学分析
岩石化学分析样品加工与测试均在核工业北京地质研究院分析测试研究中心完成, 测试选取地表新鲜的基岩样品. 主量元素通过熔片、X射线荧光光谱法(XRF)分析测试, 详细分析流程见文献[20]; 微量元素采用等离子体质谱法(ICP-MS)测定, 详细分析流程与步骤见文献[21]. 主量元素分析精度优于5%, 微量元素分析精度优于10%.
4. 分析结果
4.1 年代学特征
岩石样品(CM1)中锆石特征及U-Pb年龄测试结果如表 1(扫描首页OSID二维码可见). 锆石多数为无色透明, 自形柱状、少数粒状, 多数发育振荡环带构造, 其Th/U比值范围为0.33~0.78, 总体表现出岩浆锆石的特征(图 4a). 14颗锆石测点得出的206Pb/238U的加权平均年龄为190.6±1.7 Ma, MSWD=2.1(图 4b、c), 与小兴安岭中部的风水沟河群(175±1 Ma)、白石林场岩体(184±2 Ma)、石林林场花岗岩体(195±4 Ma)的测年结果基本一致[22-23], 即为早侏罗世.
前人在工作区的邻幅新第二林场地区的二长花岗岩中获得的单颗粒U-Pb锆石LA-ICP-MS年龄为190±1.0 Ma[24], 与小兴安地区已报道的中生代南岔林场岩体(180±2 Ma)、东安金矿(184±2 Ma)、寒月林场岩体(195±2 Ma)二长花岗岩的U-Pb测年结果基本一致[25-26], 即为早侏罗世.
综上所述, 研究区二长花岗岩、正长花岗岩成岩时代主要集中在175~195 Ma, 为同一期构造岩浆活动的产物. 同时上述测年结果表明在小兴安岭-张广才岭弧盆系内存在大规模的早侏罗世岩浆事件.
4.2 岩石地球化学特征
4.2.1 主量元素
研究区早侏罗世花岗岩主量元素分析结果如表 2(扫描首页OSID二维码可见). SiO2含量(质量分数)为72.8%~77.43%, 为酸性花岗岩类(图 5a); K2O含量为4.13%~5.38%, 在K2O-SiO2图(图 5b)中落入高钾钙碱性系列内. Na2O含量2.84%~3.99%, K2O+Na2O介于7.43%~8.61%, K2O/Na2O平均为1.29, 表明为钾质岩系; Al2O3含量12.04%~13.95%; P2O5含量0.02%~0.08%; TiO2含量0.05%~0.31%. 岩石标准矿物(CIPW)组合中, 石英为34.06~38.89, 属于SiO2饱和型. 分异指数(DI)为86.42~96.41, 平均值为93.91, 岩浆分异程度较高. A/CNK=1.05~1.15, 为过铝质花岗岩.
4.2.2 微量及稀土元素
研究区内早侏罗世花岗岩稀土元素总量ΣREE为53.07×10-6~264×10-6, 含量较高. (La/Yb)N为1.30~13.79, 表明轻稀土较重稀土相对富集, 在球粒陨石标准化稀土元素配分模式图(图 6a)中, 曲线总体上呈不对称右倾型. δEu为0.08~0.72, 为强Eu负异常型(表 2, 扫描首页OSID二维码可见).
在原始地幔标准化的微量元素蛛网图(图 6b)中, 早侏罗世花岗岩表现为富集大离子亲石元素Rb、K和高场强元素Th、Hf等, 相对亏损大离子亲石元素Ba、Sr和高场强元素Nb、Ti、P, 表现出壳源岩浆的特点[29].
5. 讨论
5.1 岩石成因
研究区似斑状二长花岗岩和中细粒正长花岗岩均属于高钾钙碱性系列, SiO2含量高, 分异指数(DI)为86.42~96.41, 表明岩石分异程度较高. 从主量元素分析结果看, 研究区早侏罗世花岗岩具有相对富铝(A/CNK=1.05~1.15)等特点, 轻稀土较重稀土相对富集, (La/Yb)N为1.30~13.79, 岩石的稀土配分曲线形态呈左高右低、左陡右缓的不对称右倾型, 并具有强烈的Eu负异常. 这与A型花岗岩的特征相似[30]. 在Whalen[31]提出的判别A型、Ⅰ型和S型花岗岩成因的图解(图 7)中, 本文花岗岩也落入典型的A型花岗岩区域. 这些证据表明白桦青年队地区早侏罗世花岗岩为A型花岗岩.
图 7 研究区早侏罗世花岗岩成因类别判别图(据文献[31])OGT-未分异的I、S和M型花岗岩(undifferentiated I-, S-and M-type granites); FG-分异Ⅰ型花岗岩(differentiated Ⅰ-type granite); 1-中细粒正长花岗岩(fine-medium-grained syenogranite); 2-似斑状二长花岗岩(porphyritic monzogranite)Figure 7. Various chemical discrimination diagrams of early Jurassic granites in the study area(After Reference[31])从微量元素结果看, 研究区早侏罗世花岗岩显示富集大离子亲石元素Rb、K和高场强元素Th、Hf, 亏损高场强元素Nb、Ti和大离子亲石元素Ba、Sr, 也与A型花岗岩特征相符[32-37]. Sr、Eu的负异常可能是岩浆演化过程中大量的斜长石结晶分异所致; P和Ti的亏损说明岩浆经历了磷灰石和钛铁矿等副矿物的分异作用, 反映出岩浆来源于地壳的特点[38].
5.2 构造背景
花岗岩是地壳重要的组成部分, 记载着岩石圈演化的重要信息. 花岗岩成因可反映其形成的构造环境和地球动力学背景[39-42]. 近些年来对A型花岗岩的研究取得了新的进展, 将其进一步划分为A1和A2两类. A1型花岗岩代表了一种非造山环境, 形成于大陆裂谷时期或板内岩浆作用; A2型形成的构造环境范围比较广泛, 包括陆边缘伸展、陆内剪切相关的伸展或是后碰撞伸展环境[43-46]. 研究区早侏罗世花岗岩Y/Nb平均值为1.49, 大于1.2, 具有较明显的Nb亏损, (La/Yb)N平均值为5.5, 小于10, 具有造山后期A2型花岗岩的特点[22]. 在Nb-Y-Ce和Rb/Nb-Y/Nb判别图解(图 8)中, 样品主要落入A2区, 表明研究区早侏罗世花岗岩为后碰撞A型花岗岩.
在阳离子R1-R2图解(图 9)中, 主要落入造山期后A型花岗岩区, 显示具有造山期后A型花岗岩的特点, 说明其形成于碰撞结束后的陆内后造山期拉张环境. 王泉等[48]认为由于大陆板片断裂诱发了软流圈物质上涌, 引起了下地壳和原有老地壳的部分熔融, 形成的混合岩浆由于浮力作用上侵于中上地壳最终定位, 形成伊春地区早侏罗世花岗岩带. 随后板片根部拆沉垮塌引起岩石圈拆沉, 导致岩石圈减薄转入伸展环境, 形成A型花岗岩质岩浆. 尹志刚等[29]认为由于太平洋板块的大规模西向俯冲, 区域上处于同碰撞期转换为造山后构造体制阶段产生的区域伸展构造环境.
综上所述, 结合小兴安岭地区的区域资料分析, 早侏罗世研究区处于后造山构造体制阶段产生的区域伸展构造环境; 区内花岗岩为古太平洋西向俯冲欧亚大陆后伸展环境下的产物.
6. 结论
(1) 黑龙江伊春地区发育有中细粒正长花岗岩和似斑状二长花岗岩, 锆石U-Pb定年显示其结晶年龄为190.6±1.7 Ma, 即岩浆侵位时代为早侏罗世.
(2) 岩石地球化学结果显示, 区内花岗岩具有高硅、富钾、富铝、低镁和贫钙的特点, 属于铝质、高钾钙碱性系列; 富集大离子亲石元素Rb、K和高场强元素Th、Hf, 亏损高场强元素Nb、Ti和大离子亲石元素Ba、Sr, 为铝质A型花岗岩, 岩浆起源于地壳的部分熔融.
(3) 结合区域地质背景、岩石学特征和地球化学研究, 早侏罗世研究区处于后造山构造体制阶段产生的区域伸展构造环境, 可能是古太平洋板块西向俯冲欧亚大陆的结果.
-
图 2 研究区区域地质图
1-第四系(Quaternary); 2-孙吴组(Sunwu fm.); 3-嫩江组(Nenjiang fm.); 4-宁远村组(Ningyuancun fm.); 5-板子房组(Banzifang fm.); 6-二浪河组(Erlanghe fm.); 7-铅山组(Qianshan fm.); 8-早侏罗世中细粒正长花岗岩(Early Jurassic fine-medium-grained syenogranite); 9-早侏罗世似斑状二长花岗岩(Early Jurassic porphyritic monzogranite); 10-晚二叠世花岗岩(Late Permian granite); 11-中奥陶世花岗岩(Middle Ordovician granite); 12-断层(fault); 13-韧性剪切带(ductile shear zone); 14-火山断裂(volcanic fault); 15-火山口(crater); 16-U-Pb测年采样点(U-Pb dating sampling site)
Figure 2. Regional geological map of the study area
图 3 白桦青年队地区花岗岩类野外宏观露头和显微特征照片
a-正长花岗岩野外露头(field outcrop of syenogranite); b-似斑状二长花岗岩野外露头(field outcrop of porphyritic monzogranite); c-正长花岗岩镜下特征(正交偏光)(microscopic characteristics of syenogranite under cross-polarized light); d-似斑状二长花岗岩镜下特征(正交偏光)(microscopic characteristics of porphyritic monzogranite under cross-polarized light); Pl-斜长石(plagioclase); Kfs-钾长石(K-feldspar); Qtz-石英(quartz); Chl-绿泥石(chlorite)
Figure 3. Field outcrops and microphotographs of the granite samples from Baihuaqingniandui area
图 7 研究区早侏罗世花岗岩成因类别判别图(据文献[31])
OGT-未分异的I、S和M型花岗岩(undifferentiated I-, S-and M-type granites); FG-分异Ⅰ型花岗岩(differentiated Ⅰ-type granite); 1-中细粒正长花岗岩(fine-medium-grained syenogranite); 2-似斑状二长花岗岩(porphyritic monzogranite)
Figure 7. Various chemical discrimination diagrams of early Jurassic granites in the study area(After Reference[31])
-
[1] Zhou J B, Cao J L, Wilde S A, et al. Paleo-Pacific subduction-accretion: Evidence from geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China[J]. Tectonics, 2014, 33(12): 2444-2466. doi: 10.1002/2014TC003637
[2] Zhang X Z, Guo Y, Zhou J B, et al. Late Paleozoic-Early Mesozoic tectonic evolution in the east margin of the Jiamusi massif, eastern Northeastern China[J]. Russian Journal of Pacific Geology, 2015, 9(1): 1-10. doi: 10.1134/S181971401501008X
[3] 吴福元, 孙德有, 林强. 东北地区显生宙花岗岩的成因与地壳增生[J]. 岩石学报, 1999, 15(2): 181-189. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.003.htm Wu F Y, Sun D Y, Lin Q. Petrogenesis of the Phanerozoic granites and crustal growth in Northeast China[J]. Acta Petrologica Sinica, 1999, 15(2): 181-189. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB902.003.htm
[4] 陈会军, 付俊彧, 钱程, 等. 东北地区前中生代花岗岩类年龄与时空分布[J]. 地质通报, 2021, 40(6): 827-844. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202106002.htm Chen H J, Fu J Y, Qian C, et al. Chronology and spatiotemporal distribution of pre-Mesozoic granites in Northeast China[J]. Geological Bulletin of China, 2021, 40(6): 827-844. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD202106002.htm
[5] 王涛. 花岗岩混合成因研究及大陆动力学意义[J]. 岩石学报, 2000, 16(2): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002002.htm Wang T. Origin of hybrid granitoids and the implications for continental dynamics[J]. Acta Petrologica Sinica, 2000, 16(2): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200002002.htm
[6] 张超, 吴新伟, 刘永江, 等. 大兴安岭中段早二叠世A型花岗岩成因及对扎兰屯地区构造演化的制约[J]. 岩石学报, 2020, 36(4): 1091-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202004008.htm Zhang C, Wu X W, Liu Y J, et al. Genesis of Early Permian A-type granites in the middle of the Great Xing'an Range and constraints on tectonic evolution of the Zhalantun area[J]. Acta Petrologica Sinica, 2020, 36(4): 1091-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202004008.htm
[7] 刘宇崴, 杜兵盈, 张铁安, 等. 大兴安岭环二库地区新元古代晚期花岗岩发现及其地质意义[J]. 地质与资源, 2017, 26(5): 453-459. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8567.shtml Liu Y W, Du B Y, Zhang T A, et al. Discovery and geological significance of the Late Neoproterozoic granite in Huanerku, Daxinganling region[J]. Geology and Resources, 2017, 26(5): 453-459. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8567.shtml
[8] 陈卓, 李向文, 张胜江, 等. 黑龙江十五里桥金矿龙江组火山岩地球化学特征及构造背景分析[J]. 地质与资源, 2019, 28(5): 413-422. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8415.shtml Chen Z, Li X W, Zhang S J, et al. Geochemistry and tectonic setting of the volcanic rocks of Longjiang Formation in Shiwuliqiao Gold Deposit, Heilongjiang Province[J]. Geology and resources, 2019, 28(5): 413-422. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8415.shtml
[9] 田子龙, 赵庆英, 李子昊, 等. 内蒙古突泉县姜家屯侏罗纪花岗闪长岩年代学及地球化学特征[J]. 地质与资源, 2017, 26(6): 542-551. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8581.shtml Tian Z L, Zhao Q Y, Li Z H, et al. Geochronology and geochemistry of the Jurassic granodiorite in Jiangjiatun, Tuquan County of Inner Mongolia[J]. Geology and Resources, 2017, 26(6): 542-551. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8581.shtml
[10] 张龙, 任传涛, 陈桂虎, 等. 物化探综合找矿方法在吉林省汪清县复兴地区勘查中的应用[J]. 地质与资源, 2022, 31(1): 68-75. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10365.shtml Zhang L, Ren C T, Chen G H, et al. Application of integrated geophysical and geochemical prospecting methods in Fuxing area, Jilin Province[J]. Geology and Resources, 2022, 31(1): 68-75. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10365.shtml
[11] 曾振, 孙雷, 张兴洲, 等. 饶河杂岩中枕状玄武岩的锆石U-Pb年代学、地球化学及其地质意义[J]. 地质与资源, 2019, 28(2): 119-127. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8386.shtml Zeng Z, Sun L, Zhang X Z, et al. Zircon U-Pb chronology and geochemistry of the pillow basalts from Raohe complex: Geological implications[J]. Geology and Resources, 2019, 28(2): 119-127. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract8386.shtml
[12] 葛茂卉, 张进江, 刘恺. 小兴安岭-张广才岭铁力地区侏罗纪辉绿岩年代学、地球化学、锆石Hf同位素特征及其构造意义[J]. 岩石学报, 2020, 36(3): 726-740. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202003006.htm Ge M H, Zhang J J, Liu K. Geochronology, geochemistry and zircon Hf isotope of the Jurassic diabase from the Tieli area, Lesser Xing'an-Zhangguangcai Range, and its geological implications[J]. Acta Petrologica Sinica, 2020, 36(3): 726-740. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202003006.htm
[13] 张立仕, 孙丰月, 李碧乐, 等. 小兴安岭-张广才岭成矿带福安堡钼矿区花岗岩类的岩石成因和构造背景: 元素地球化学、锆石U-Pb年龄和Sr-Nd-Hf同位素约束[J]. 地质学报, 2021, 95(8): 2471-2492. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202108014.htm Zhang L S, Sun F Y, Li B L, et al. Petrogenesis and tectonic setting of granitoids in the Fu'anpu molybdenum deposit, Lesser Xing'an-Zhangguangcai Range metallogenic belt: Constraints from element geochemistry, zircon U-Pb geochronology and Sr-Nd-Hf isotopes[J]. Acta Geologica Sinica, 2021, 95(8): 2471-2492. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202108014.htm
[14] 李仰春, 韩振哲, 吴淦国, 等. 黑龙江伊春地区早中生代花岗岩成矿作用及成矿能力差异性探讨[J]. 地质与勘探, 2013, 49(1): 28-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201301005.htm Li Y C, Han Z Z, Wu G G, et al. Metallogenesis and metallogenic differences of the Early Mesozoic granites in the Yichun area, Heilongjiang Province[J]. Geology and Exploration, 2013, 49(1): 28-38. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201301005.htm
[15] 刘英才, 付俊彧, 赵春荆, 等. 《东北地区1: 150万大地构造相图》的编制[J]. 地质与资源, 2020, 29(1): 1-6. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10143.shtml Liu Y C, Fu J Y, Zhao C J, et al. Compilation of The 1: 1500000 Tectonic Facies Map of Northeast China[J]. Geology and Resources, 2020, 29(1): 1-6. http://manu25.magtech.com.cn/Jweb_dzyzy/CN/abstract/abstract10143.shtml
[16] 许文良, 王旖旎, 王枫, 等. 西太平洋俯冲带的演变: 来自东北亚陆缘增生杂岩的制约[J]. 地质论评, 2022, 68(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202201001.htm Xu W L, Wang Y N, Wang F, et al. Evolution of western Pacific subduction zones: Constraints from accretionary complexes in NE Asian continental margin[J]. Geological Review, 2022, 68(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP202201001.htm
[17] 王粉丽, 王海鹏, 鲁红峰. 大兴安岭北上其地区晚石炭世花岗岩类LA-ICP-MS锆石U-Pb测年及地质意义[J]. 西北地质, 2017, 50(4): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201704008.htm Wang F L, Wang H P, Lu H F. LA-ICP-MS zircon U-Pb ages of Late Carboniferous granites from Shangqi area in Great Xing'an Range and its significance[J]. Northwestern Geology, 2017, 50(4): 51-58. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI201704008.htm
[18] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 2010, 51(1/2): 537-571.
[19] Corfu F, Hanchar J M, Hoskin P W O, et al. Atlas of zircon textures[J]. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 469-500. doi: 10.2113/0530469
[20] Chen F, Hegner E, Todt W. Zircon ages and Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany: Evidence for a Cambrian magmatic arc[J]. International Journal of Earth Sciences, 2000, 88(4): 791-802. doi: 10.1007/s005310050306
[21] Chen F, Siebel W, Satir M, et al. Geochronology of the Karadere basement (NW Turkey) and implications for the geological evolution of the Istanbul zone[J]. International Journal of Earth Sciences, 2002, 91(3): 469-481. doi: 10.1007/s00531-001-0239-6
[22] 李超, 孙国胜, 杨乃峰, 等. 小兴安岭石林林场A型花岗岩地球化学特征及构造环境[J]. 世界地质, 2013, 32(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201301001.htm Li C, Sun G S, Yang N F, et al. Geochemical characteristics and tectonic setting of A-type granite in Shilin forestry center in Xiaoxing'anling[J]. Global Geology, 2013, 32(1): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ201301001.htm
[23] 徐美君, 许文良, 王枫, 等. 小兴安岭中部早侏罗世花岗质岩石的年代学与地球化学及其构造意义[J]. 岩石学报, 2013, 29(2): 354-368. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302003.htm Xu M J, Xu W L, Wang F, et al. Geochronology and geochemistry of the Early Jurassic granitoids in the central Lesser Xing'an Range, NE China and its tectonic implications[J]. Acta Petrologica Sinica, 2013, 29(2): 354-368. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201302003.htm
[24] 姜浩杰. 伊春西部新第二林场-跃进林场中生代花岗岩特征及地质意义[D]. 成都: 成都理工大学, 2017. Jiang H J. Characteristics and geological significance of the Mesozoic granites of the New Second Forest Farm-Yuejin Forest Farm in Western Yichun[D]. Chengdu: Chengdu University of Technology, 2017.
[25] 杨长江, 王亚春. 小兴安岭东南部伊春中生代花岗岩的锆石U-Pb测年及其地质意义[J]. 吉林地质, 2010, 29(4): 1-5, 31. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ201004001.htm Yang C J, Wang Y C. LA-ICP-MS zircon U-Pb age and the geological significance for Yichun Mesozoic granites in southeast Lesser Khingan Range[J]. Jilin Geology, 2010, 29(4): 1-5, 31. https://www.cnki.com.cn/Article/CJFDTOTAL-JLDZ201004001.htm
[26] 李碧乐, 孙永刚, 陈广俊, 等. 小兴安岭东安金矿区细粒正长花岗岩U-Pb年龄、岩石地球化学、Hf同位素组成及地质意义[J]. 地球科学, 2016, 41(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201601001.htm Li B L, Sun Y G, Chen G J, et al. Zircon U-Pb geochronology, geochemistry and Hf isotopic composition and its geological implication of the fine-grained syenogranite in Dong'an goldfield from the Lesser Xing'an Mountains[J]. Earth Science, 2016, 41(1): 1-16. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201601001.htm
[27] Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks[J]. Canadian Journal of Earth Sciences, 1971(8): 523-548.
[28] Peccerillo A, Taylor S R. Geochemistry of eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey[J]. Contributions to Mineralogy and Petrology, 1976, 58: 63-81. doi: 10.1007/BF00384745
[29] 尹志刚, 宫兆民, 王春生, 等. 小兴安岭平顶山一带早侏罗世花岗岩类年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2021, 51(1): 107-125. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202101009.htm Yin Z G, Gong Z M, Wang C S, et al. Chronological, geochemical characteristics and geological significance of Early Jurassic granites in Pingdingshan area of Lesser Xing'an Range[J]. Journal of Jilin University (Earth Science Edition), 2021, 51(1): 107-125. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ202101009.htm
[30] Xu W L, Ji W Q, Pei F P, et al. Triassic volcanism in eastern Heilongjiang and Jilin provinces, NE China: Chronology, geochemistry, and tectonic implications[J]. Journal of Asian Earth Sciences, 2009, 34(3): 392-402. doi: 10.1016/j.jseaes.2008.07.001
[31] Whalen J B, Currie K L, Chappell B W. A-type granites: geochemical characteristics, discrimination and petrogenesis[J]. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419. doi: 10.1007/BF00402202
[32] 李永军, 杨高学, 吴宏恩, 等. 东准噶尔贝勒库都克铝质A型花岗岩的厘定及意义[J]. 岩石矿物学杂志, 2009, 28(1): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200901002.htm Li Y J, Yang G X. Wu H E, et al. The determination of Beilekuduke aluminous A-type granites in East Junggar, Xinjiang[J]. Acta Petrologica et Mineralogica, 2009, 28(1): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YSKW200901002.htm
[33] 邱检生, 王德滋, 刘洪, 等. 大别造山带北缘后碰撞富钾火山岩: 地球化学与岩石成因[J]. 岩石学报, 2002, 18(3): 319-330. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203005.htm Qiu J S, Wang D Z, Liu H, et al. Post-collisional potash-rich volcanic rocks in the north margin of Dabie orogenic belt: Geochemistry and petrogenesis[J]. Acta Petrologica Sinica, 2002, 18(3): 319-330. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200203005.htm
[34] 韩振哲. 小兴安岭东南段早中生代花岗岩类时空演化特征与多金属成矿[D]. 北京: 中国地质大学(北京), 2011. Han Z Z. Characteristics of temporal and spatial evolution and polymetallic mineralization of Early Mesozoic granites in southeastern Xiaoxin'an Mountains[D]. Beijing: China University of Geosciences (Beijing), 2011
[35] Sylvester P J. Post-collisional alkaline granites[J]. The Journal of Geology, 1989, 97(3): 261-280. doi: 10.1086/629302
[36] Dawei H, Shiguang W, Baofu H, et al. Post-orogenic alkaline granites from China and comparisons with anorogenic alkaline granites elsewhere[J]. Journal of Southeast Asian Earth Sciences, 1996, 13(1): 13-27. doi: 10.1016/0743-9547(96)00002-5
[37] Eby G N. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications[J]. Geology, 1992, 20(7): 641-644. doi: 10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
[38] 张旗, 王焰, 李承东, 等. 花岗岩的Sr-Yb分类及其地质意义[J]. 岩石学报, 2006, 22(9): 2249-2269. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm Zhang Q, Wang Y, Li C D, et al. Granite classification on the basis of Sr and Yb contents and its implications[J]. Acta Petrologica Sinica, 2006, 22(9): 2249-2269. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200609000.htm
[39] 李金超, 国显正, 孔会磊, 等. 东昆仑浪麦滩地区A型花岗岩年代学、地球化学特征及其地质意义[J]. 地质学报, 2021, 95(5): 1508-1522. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202105014.htm Li J C, Guo X Z, Kong H L, et al. Geochronology, geochemical characteristics and geological significance of A-type granite from the Langmaitan area, East Kunlun[J]. Acta Geologica Sinica, 2021, 95(5): 1508-1522. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202105014.htm
[40] 莫宣学. 岩浆作用与青藏高原演化[J]. 高校地质学报, 2011, 17(3): 351-367. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201103003.htm Mo X X. Magmatism and evolution of the Tibetan Plateau[J]. Geological Journal of China Universities, 2011, 17(3): 351-367. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDX201103003.htm
[41] 郑永飞, 陈伊翔. 大陆俯冲带壳幔相互作用[J]. 地球科学, 2019, 44(12): 3961-3983. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912001.htm Zheng Y F, Chen Y X. Crust-mantle interaction in continental subduction zones[J]. Earth Science, 2019, 44(12): 3961-3983. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201912001.htm
[42] 王涛, 王晓霞, 郭磊, 等. 花岗岩与大地构造[J]. 岩石学报, 2017, 33(5): 1459-1478. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705006.htm Wang T, Wang X X, Guo L, et al. Granitoid and tectonics[J]. Acta Petrologica Sinica, 2017, 33(5): 1459-1478. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201705006.htm
[43] 张薇洁. A型花岗岩成因的热力学模拟[D]. 北京: 中国地质大学(北京), 2020. Zhang W J. Thermodynamic modeling of the origin of A-type granites[D]. Beijing: China University of Geosciences (Beijing), 2020.
[44] 王金芳, 李英杰, 李红阳, 等. 内蒙古西乌旗德勒哈达早白垩世A型花岗岩形成时代: 锆石U-Pb定年证据[J]. 中国地质, 2018, 45(1): 197-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201801020.htm Wang J F, Li Y J, Li H Y, et al. Formation age of the Delehada Early Cretaceous A-type granite in Xiwu Banner, Inner Mongolia: evidence from zircon U-Pb chronology[J]. Geology in China, 2018, 45(1): 197-198. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201801020.htm
[45] 王存智, 黄志忠, 赵希林, 等. 下扬子地区姚村A型花岗岩年代学、地球化学特征及岩石成因[J]. 中国地质, 2021, 48(2): 549-563. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102015.htm Wang C Z, Huang Z Z, Zhao X L, et al. Geochronology, geochemistry and petrogenesis of Early Cretaceous Yaocun A-type granite in the Lower Yangtze Region[J]. Geology in China, 2021, 48(2): 549-563. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202102015.htm
[46] 尚永明, 李小伟, 祝新友, 等. 内蒙古赤峰五十家子岩体成因及其对岩石圈伸展减薄的指示[J]. 中国地质, 2022, 49(4): 1323-1345. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202204021.htm Shang Y M, Li X W, Zhu X Y, et al. Petrogenesis and its implications for the lithospheric thinning of the Wushijiazi pluton in Chifeng, Inner Mongolia[J]. Geology in China, 2022, 49(4): 1323-1345. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202204021.htm
[47] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1985, 48: 43-55. doi: 10.1016/0009-2541(85)90034-8
[48] 王泉, 余友, 韦健, 等. 黑龙江东部伊春-延寿晚三叠世-早侏罗世花岗岩岩基带深部约束机制[J]. 矿产勘查, 2017, 8(2): 229-238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201702007.htm Wang Q, Yu Y, Wei J, et al. Deep constraints mechanism of Late Triassic-Early Jurassic Yichun-Yanshou granite batholith belt, eastern Heilongjiang[J]. Mineral Exploration, 2017, 8(2): 229-238. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS201702007.htm