支持向量机在预测松辽盆地深层火山岩岩性中的应用

    Application of support vector machine in lithological prediction of deep volcanic rocks in Songliao Basin

    • 摘要: 为评价松辽盆地深层火山岩油气赋存潜力与深化勘探部署, 本研究利用盆地区域重磁结合地震、探井资料对盆地深层火山岩的岩性进行了预测.主要应用边界元重力正演剥皮法求取了反映盆地深部地质体的重力异常效应, 在积分迭代下延方法的基础上研发了对盆地深层断陷的火山岩重磁异常信息进行增强与均衡的平化曲方法, 并利用该方法获取了反映深层断陷火山岩的重磁异常效应, 对其进行二维物性反演, 有效地获取了反映盆地深层火山岩的密度与磁化率.在钻遇盆地深层火山岩岩性样本的约束下, 采用人工智能支持向量机的方法对火山岩的岩性进行了有效的识别, 支持向量机交叉验证准确率达到81.6%.该方法在覆盖区地质填图中具有应用价值.

       

      Abstract: To evaluate the hydrocarbon potential and optimize the exploration deployment for the deep volcanic rocks in Songliao Basin, the study predicts the lithology of deep volcanic rocks by integrating regional gravity-magnetic data with seismic and well data. The boundary element gravity forward stripping method is applied to obtain the gravity anomaly effect reflecting deep geological bodies. Based on the integral iterative downward continuation, the flattening-curve method is developed to enhance and balance gravity-magnetic anomaly information related to volcanic rocks in deep fault depressions, which is then used to extract gravity-magnetic anomaly effects indicative of volcanic rocks in deep fault depressions, effectively obtaining the density and magnetic susceptibility reflecting the volcanic rocks in the basin through 2D physical property inversion. Constrained by lithology samples of the deep volcanic rocks from drilling, the artificial intelligence support vector machine (SVM) method is employed for effective lithology identification, achieving a cross-validation accuracy of 81.6%. This method is proved valuable application in geological mapping of covered areas.

       

    /

    返回文章
    返回